a2 United States Patent
Wang et al.

US009071540B2

(10) Patent No.: US 9,071,540 B2
(45) Date of Patent: Jun. 30, 2015

(54) PROXY SERVER, HIERARCHICAL
NETWORK SYSTEM, AND DISTRIBUTED
WORKLOAD MANAGEMENT METHOD

(75) Inventors: Wen Jie Wang, Shanghai (CN); Hai
Shan Wu, Beijing (CN); Bo Yang,
Beijing (CN); Yi Xin Zhao, Beijing
(CN)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 242 days.

(21) Appl. No.: 13/592,932
(22) Filed: Aug. 23,2012
(65) Prior Publication Data

US 2012/0317283 Al Dec. 13, 2012

Related U.S. Application Data
(63) Continuation of application No. 13/430,948, filed on

(58) Field of Classification Search
CPC HO4L 47/22; HO4L 47/2425; HO4L 67/16
USPC ittt 709/223, 224
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,720,971 B2 5/2010 Moutafov

7,738,452 Bl 6/2010 O’Rourke et al.
7,822,860 B2 10/2010 Brown et al.

8,291,076 B2* 10/2012 Lunaetal. 709/224
2003/0036886 Al* 2/2003 Stone 702/188
2007/0168496 Al* 7/2007 Bansodetal. ... 709/224
2009/0150565 Al 6/2009 Grossner et al.

2010/0042450 Al 2/2010 Binswanger et al.

2010/0235355 Al 9/2010 Carter et al.

2010/0251008 Al 9/2010 Swildens

2011/0153806 Al* 6/2011 Bagasra 709/224
2013/0297800 Al* 11/2013 Considineetal. 709/226

* cited by examiner

Primary Examiner — Philip B Tran
(74) Attorney, Agent, or Firm — Vazken Alexanian
57 ABSTRACT

A proxy server and a hierarchical network system and a
distributed workload management method. According to one

Mar. 27, 2012. embodiment of this disclosure, the proxy server includes: a
rate controller configured to, based on measured request-
(30) Foreign Application Priority Data related information and service quality parameters relative to
service levels of requests, periodically determine a dispatch
Mar. 30, 2011 (CN) 201110077714 rate for requests of each service]eve], wherein the sum of the
dispatch rate for respective service levels is less than or equal
(51) Int.CL to a predetermined rate; and a request dispatcher configured
GOGF 15/173 (2006.01) to dispatch the requests of the corresponding service level in
HO4L 12/815 (2013.01) accordance with the dispatch rate determined by the rate
HO4L 29/08 (2006.01) controller. One aspect of the disclosure realizes a low over-
HO4L 12/851 (2013.01) head, highly scalable, simple and efficient workload manage-
(52) US.CL ment system to achieve QoS assurance and overload protec-
CPCcccceee. HO4L 47/22 (2013.01); HO4L 67/16 tion.
(2013.01); HO4L 67/1097 (2013.01); HO4L
47/2425 (2013.01) 5 Claims, 5 Drawing Sheets
SR TE]
e ;I-aw wesnsgesne oyaie? “pnsensd E
\\\\\\\\\\\ -
3 B

DIl 3ot ittt oF FaReet of dpainadivay sery e
SR fhgnestarrival st

B8

3. o

ok for ot

RO LMRet Wy

_ v
% o

Fragtigton vk i nin e 30v Sash iy et
Ty prrndtsmivirat sty tosadd Sy eaduter el foltey

US 9,071,540 B2

Sheet 1 of 5

Jun. 30, 2015

U.S. Patent

iR

(BRI

et et o e N

BdeuTy

U.S. Patent Jun. 30, 2015 Sheet 2 of 5 US 9,071,540 B2

plication seresr 216

2

A

oy

*
&

%
% 3

2y

18

i

foaad
v

e B S R A

U.S. Patent Jun. 30, 2015 Sheet 3 of 5 US 9,071,540 B2

US 9,071,540 B2

Sheet 4 of 5

Jun. 30, 2015

U.S. Patent

o o Fver o) Baupannng 3

3

sy Bugoodseins i spsenbes ymdag

US 9,071,540 B2

Sheet 5 of 5

BVETE BIRAD

sy e peanbng ouns
e B SUAnGNRl J0 YRR B Sven

Jun. 30, 2015

U.S. Patent

US 9,071,540 B2

1

PROXY SERVER, HIERARCHICAL
NETWORK SYSTEM, AND DISTRIBUTED
WORKLOAD MANAGEMENT METHOD

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation of and claims priority
from U.S. application Ser. No. 13/430,948 filed on Mar. 27,
2012, which in turn claims priority under 35 U.S.C. 119 from
Chinese Application 201110077714.9, filed Mar. 30, 2011,
the entire contents of both applications are incorporated
herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present disclosure relates to network traffic manage-
ment techniques, and more specifically, to a method and
system for distributed workload management of network
applications in a hierarchical network system.

2. Description of the Related Art

Hierarchical network systems, such as cloud computing
environments, are increasingly becoming widely adopted.
Such systems include, for example, front-end HTTP servers,
a middle layer of proxies, and a back-end layer of application
servers and/or databases. The HTTP server layer filters out
invalid or malicious requests, and then forwards valid
requests to the proxy layer. The proxy layer then routes those
requests to a selected application server and/or database.

With the development of cloud computing, the concept of
supplying a resource as a service is put forward, emphasizing
the importance of flexible control of overload protection and
quality of service (hereinafter referred to as QoS) assurance.
As a result, workload management has become increasingly
important in hierarchical network systems. Commonly,
workload management occurs mostly between layers of a
proxy and backend server.

Many efforts have now been made on workload manage-
ment in hierarchical network systems, which can be divided
into two categories: centralized and distributed workload
management.

Centralized workload management has now been prima-
rily adopted in hierarchical network systems. That is, a center
unit is relied upon to collect information and make decisions
about request dispatching in a hierarchical network system.

In centralized management architecture, using a central-
ized controller to manipulate traffic flowing through proxies
is widely practiced. A central management unit in the cen-
tralized controller is responsible for collecting and reviewing
the workload arrival rate and the response time thereof,
thereby managing the workload applied to a backend server.
In some cases, the management decision is made in a central-
ized form and is implemented in a distributed manner by
multiple servers in the proxy layer. In most situations, how-
ever, the decision is made and implemented in a centralized
manner.

In this centralized management, it is necessary to pre-
collect information about backend application servers, such
as CPU usage and/or memory usage and the execution time of
each request, and process the information to obtain several
statistical data samples. The central management unit may
acquire some prior knowledge through a training/learning
procedure based on those samples, and then the workload
management of incoming traffic can be enabled based on the
prior knowledge. Usually, the deployment of such a central-
ized controller may require professional skills, leading to a

10

15

20

25

30

35

40

45

50

55

60

65

2

large system overhead for workload management, suffering
from a high implementation complexity, and consuming a
large amount of time. Moreover, with centralized manage-
ment, all management functions stay in a single server, and in
this case it is difficult to improve its scalability as every server
has its own capability limitations. Further, there is another
serious issue with centralized management, i.e., if the central
management unit fails, the resource will be utilized insuffi-
ciently in the case of the unbalanced load among clusters, and
to an even extent, the workload management of the whole
system will be disabled.

Indistributed management architecture, traffic engineering
is usually optimized through distributed controllers in the
Internet. Implemented within the transport layer of the OSI
protocol stack, such a distributed controller does not rely
upon information from the backend servers to work, such as
information about CPU/memory usage of the backend serv-
ers, and the like. The distributed controller resorts to infor-
mation collected in the transport layer, such as packet loss
rate, data transmission rate and other hardware-related infor-
mation, and thus takes no account of serviced application-
based information, such as request priority, request response
time, and other information relative to requesting applica-
tions (e.g., client type, service requirement, and the like).
Therefore, the distributed controller fails to distinguish
between the services provided for front-end requests, and
thus is incapable of providing different QoS assurances for
different service levels, and is also unable to protect backend
application servers from overload.

Confronting traffic from a large number of applications
deployed in a cloud environment, it is a challenge to guaran-
tee Service Level Agreements (SLA) requirements from cli-
ents with various resource requirements and workload char-
acteristics.

Therefore, there is a need for an improved method and
system capable of distributed workload management for net-
work applications in a hierarchical network system.

BRIEF SUMMARY OF THE INVENTION

In order to overcome these deficiencies, the present inven-
tion provides a proxy server, including: a rate controller con-
figured to, based on measured request-related information
and service quality parameters relative to service levels of
requests, periodically determine a dispatch rate for requests
of each service level, wherein a sum of the dispatch rate for
respective service levels is less than or equal to a predeter-
mined rate; and a request dispatcher configured to dispatch
the requests of the corresponding service level in accordance
with the dispatch rate determined by the rate controller.

According to another aspect, the present invention pro-
vides a hierarchical network system, including: at least one
proxy server, including: a rate controller configured to, based
on measured request-related information and service quality
parameters relative to service levels of requests, periodically
determine a dispatch rate for requests of each service level,
wherein a sum of the dispatch rate for respective service
levels is less than or equal to a predetermined rate; and a
request dispatcher configured to dispatch the requests of the
corresponding service level in accordance with the dispatch
rate determined by the rate controller; and an application
server configured to serve the at least one proxy server,
including: a resource detector configured to periodically
detect a current usage of resources of the application server
and a current request arrival rate; a maximum rate calculator
configured to, based on the detected current resource usage,
the current request arrival rate and a target usage of the

US 9,071,540 B2

3

resource, calculate a maximum admitted rate of requests fora
next management cycle; and a rate distributor configured to
distribute the maximum admitted rate for each proxy server as
its predetermined rate based on a predetermined policy.

According to yet another aspect, the present invention pro-
vides a method for distributed workload management in hier-
archical network system, including: periodically determining
a dispatch rate for requests of each service level based on
measured request-related information and service quality
parameters relative to service levels of requests, wherein a
sum of the dispatch rate for respective service levels is less
than or equal to a predetermined rate; and dispatching the
requests of the corresponding service level in accordance
with the determined dispatch rate.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is an illustrative view of a hierarchical system in
which the present invention can be implemented;

FIG. 2 illustrates a schematic structural block diagram of a
hierarchical system capable of workload management
according to an embodiment of this disclosure;

FIG. 3 shows a graph illustrating relationship between loss
value obtained with a utility function and current response
time, target response time and importance;

FIG. 4 illustrates a schematic flowchart of a workload
management process implemented on a proxy server accord-
ing to an embodiment of this disclosure; and

FIG. 5 illustrates a schematic flowchart of a workload
management process implemented on an application server
according to an embodiment of this disclosure.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the following discussion, many details are provided to
aid in a thorough understanding of the present invention. It
will be obvious to those skilled in the art that the scope of the
present invention does not change in the absence of such
details. It shall be appreciated that any special terms used
below are merely for description, and thus it is not intended
for the present invention to be limited to those specific appli-
cations represented and/or implied with such terms.

According to an embodiment of the present invention, an
integrated design and process architecture is provided to
enable a local decision based on limited information, wherein
on the proxy server side, different allowed rates can be allo-
cated to different request classes or service levels to achieve
service differentiation and fairness, while on the application
server side, the maximum request arrival rate that is allowed
by the application server is calculated based on limited infor-
mation.

On the proxy server side, a utility function is designed in an
embodiment of the present invention to control the allocation
of rates used to dispatch requests from different queues to
application servers, so as to achieve service differentiation
and fairness. The goal of such rate allocation for different
classes by a proxy server is to manage the QoS of different
service levels to achieve service differentiation. In an
embodiment, the QoS requirement is specified in terms of
target response time and importance of requests.

The utility function is a function used to associate the
measured request-related information with the QoS require-
ment following a constraint that the sum of the rate for all
queues is less than or equal to the admitted total rate acquired
from a backend server. The request-related information mea-

15

20

30

35

40

45

50

55

4

sured on the proxy server can include, for example, the aver-
age request arrival rate of each queue, the average queue
length, the current response time of each queue, and the like.

The relationship between dispatch rates for different
queues and the current response time can be established
through a queuing model to determine the dispatch rate for
each queue such that the sum of the utility function is opti-
mized (in an embodiment, it is minimized). A goal to be
achieved by the present invention is: a service class with a
higher importance will have such a priority that its response
time requirement can be satisfied, but no service class will be
starved (i.e., being disregarded or having a very low dispatch
rate).

On the application server side, the maximum admitted
request arrival rate corresponding to the proxy server is cal-
culated and sent to the proxy server. Instead of an accurate
model, a self-adaptive method is used on the application
server side to estimate the resource requirement. The calcu-
lation is based on very limited information about the server,
including target resource usage (e.g., 90% CPU), current
resource usage (e.g., CPU load), request arrival rate, and/or
other information as desired. Such information can be repre-
sented in a script. Further, it is not necessary for the device
performing the calculation to be integrated with the applica-
tion server. The calculation consumes very limited CPU
resources, thus having no interference with server loads.

Below, an embodiment of the present invention will be
illustrated with reference to the drawings.

FIG. 1 shows an illustrative view of a hierarchical system in
which an embodiment of the present invention can be imple-
mented. As shown in FIG. 1, the hierarchical system includes
a layer of clients/network servers (i.e., front-end), a layer of
proxy servers (i.e., middle layer), and a layer of application
servers (i.e., back-ends). The workload management accord-
ing to this disclosure involves the middle layer and the back-
ends.

FIG. 2 illustrates a schematic structural block diagram of a
hierarchical system capable of the workload management
according to an embodiment of the present invention. As
shown in FIG. 2, the front-end includes one or more clients,
which may send requests for resources to the back-end appli-
cation servers through the proxy servers.

The middle layer includes one or more proxy servers, each
of'the proxy servers may receive a request for resources from
a client it served, and then based on the maximum allowed
rate(s) provided by the back-end application server(s), dis-
patch the received request to a corresponding application
server at a dispatch rate corresponding to the service level of
the received request.

A default dispatch rate can be set in the proxy server, that s,
so that rates allocated to all service classes are even. Each
service class is set with a target response time and an impor-
tance value. Upon arrival at the proxy, a request can be clas-
sified into its service class. Each service class maintains a
queue and a request dispatcher (e.g., credit-based) to manage
its dispatch rate. If the system is not overloaded, the length of
every queue should be zero. As the system gets overloaded,
the requests of a service class with lower priority will increase
the load for management and queuing, and thus experience a
longer response time. An internal calculation cycle adjusts the
dispatch rate for each queue based on the correlation between
the estimated current dispatch rate and the QoS requirement
received.

The back-end includes one or more application servers,
each of which may calculate its respective maximum arrival
rate allowed based on its own limited information, and then
send it to the corresponding proxy server(s).

US 9,071,540 B2

5

As appreciated by those skilled in the art, each application
server may serve one or more proxies, and each proxy server
can accept services provided by one or more application
servers as well. Application servers can learn the state of
proxy servers automatically. This can be done as application
servers initially receive requests from a proxy. Alternatively,
application servers can send requests in a poll manner to learn
about proxies that need to use their resources.

As shown in FIG. 2, the proxy server 230 includes a request
classifier 231, a queuing module 233, a rate controller 235,
and a request dispatcher 237.

The request classifier 231 receives requests from the cli-
ents, and classifies the received requests into difterent service
levels. The classification can be conducted based upon the
QoS requirement of each request. The QoS requirement is
represented by, for example, the target response time of the
request and its importance, which are normally predeter-
mined based on the Service Level Agreement (SLA) between
a client and a service provider.

For instance, requests can be divided into three classes:
gold, silver, and bronze. For requests of the gold class, its
target response time can be 10 ms and its importance is high;
for requests of the silver class, its target response time can be
20 ms and have a moderate importance; and for requests of the
bronze class, its target response time can be 50 ms and have a
low importance.

It should be noted that the request classifier 231 is optional.
A request from the client itself can be tagged to indicate the
corresponding service level it belongs to.

The queuing module 233, which is also optional, is used to
maintain one or more request queues, e.g., different queues
corresponding to different request service levels. For
example, three request queues Q1, Q2 and Q3 can be setup in
the queuing module 233 for the maintenance queues of gold,
silver, and bronze classes, respectively.

The rate controller 235 may periodically calculate a dis-
patch rate for each service level based on the information
from the application server 210 and the QoS requirement of
each service level. The calculation cycle of the rate controller
235 may be or may not be in synchronization with the man-
agement cycle of the backend application server, and it is not
critical for this disclosure.

The rate controller 235 receives from the application server
210 by which it is served with resources a maximum arrival
rate for the requests arrived from the rate controller 235. The
rate controller 235 also detects the current response time of
each service level and retrieves the target response time and
the importance of each service level. It should be noted that
the term “current response time” used herein refers to an
actual request response time during a current calculation
cycle.

First, in order to correlate the current response time of the
request of each service level with the dispatch rate of each
service level, the rate controller 235 establishes a queuing
model for each queue corresponding to an individual service
level based on the queuing theories in the art. The queuing
model may formulate the relationship between the dispatch
rate r and the response time T as a function of T=f(r) for each
request queue.

It should be noted that the sum of the dispatch rates of all of
the queues should be less than or equal to the maximum
arrival rate allocated to the proxy server 230 by the applica-
tion server 210. Such a constraint can be represented as:

10

15

20

25

35

40

45

50

55

60

65

®

wherein, i (1=i<]) is an integer index for a queue; and I is an
positive integer to indicate the number of the service levels,
i.e., the number of the queues maintained in the queuing
module 233.

Second, in order to achieve service level differentiation and
fairness, a utility function is introduced in this disclosure. The
utility function is a function to correlate the current response
time and the QoS requirement for requests of each service
level. Under the constraint (1), the dispatch rate r leading to
the extremum of the utility function for each service level is
the solution that may meet the QoS requirement. In other
words, this disclosure uses a utility function to control the
dispatch rate for each queue. Next, the utility function is
represented as D,.

The solution that minimizes the sum of the utility function
of each request queue will give the higher priority to those
service levels with higher importance in terms of target
response time requirement, while no service level will be
starved.

The utility function according to this disclosure may rep-
resent the loss due to the unsatisfied target response time of a
service level. A goal of the utility function is to cause no loss
to occur if the current response time is less than or equal to the
target response time, otherwise, the loss increases linearly.
For service levels with the same target response time, in the
case that the same amount of time of the current response time
exceeds the target response time, a service level with a higher
importance will have a lower loss rate.

FIG. 3 shows a graph illustrating a relationship between
loss value obtained with the utility function and current
response time, target response time and importance.

As shown in FIG. 3, when the current response time is less
than 5 ms, all of the three queues have aloss value 0. When the
current response time is over 5 ms, the larger the importance
is, the larger the loss is for the same current response time.

According to an embodiment of the present invention, the
utility function D, provided is:

@

St —ay + @ - 405
2

Di(Ty) =

wherein, T, is the current request response time of the ith
queue, C, is the importance of the ith queue, and d, is the target
request response time of the ith queue.

Last, the following equation (3) is used to get the dispatch
rate for the ith queue:

minD(T) 3

wherein, min stands for a function for obtaining the mini-
mum.

Solving the equation (3) through substituting T=f{r) and
the equation (2), its result is the dispatch rate for the ith queue
in the next calculation cycle.

Although it is described above to use the current request
response time of each service level to correlate the dispatch
rate and the QoS requirement (e.g., its target response time
and importance) of each request queue, those skilled in the art
will appreciate that it is possible to correlate other attributions
(such as, queue length at different time, dispatch rate, arrival
rate, waiting time or the like) of a request queue to the QoS

US 9,071,540 B2

7

requirement using the existing queuing model. Further,
although a specific utility function is given above, those
skilled in the art will appreciate that other utility functions
also can be designed in dependence of particular require-
ments thereof. For example, the utility function can be for-
mulated with other queue attributions, by separately weight-
ing T,, C, and d, or in the form of square and square root,
and/or the like.

According to another embodiment of this disclosure,
another utility function Di is provided as below:

i previous_cycle i previous_cycle Q)

Di(r) =

w=d; + %[; and

“current_cycle current_cycle

1
¥ = Fmax
i=1

wherein, L is queue length, L, .05 cyeze 18 the maximum
length of the ith queue in the previous calculation cycle, and
L; currens_cyeze 18 the maximum length of the ith queue in the
current calculation cycle.

This utility function calculates the weight for the dispatch
rate allocated to a corresponding request queue under the
constraint (1) based on the QoS requirements of each service
level. For example, the dispatch rate of queue 1 is D,/(D, +
D,+D;)xr,,,.; the dispatch rate of queue 2 is D,/(D,+D,+
D;)xr,,..; and as to the queue 3, its dispatch rate is D;/(D, +
D,4D;)xr,, .

Upon the calculation of the dispatch rate of each queue, the
rate controller 235 sends the calculated rate value to the
request dispatcher 237. The rate controller 235, in response to
a maximum rate update received from the application server
210, may update the maximum arrival rate it stored, and the
dispatch rate is calculated only once per cycle.

It should be noted that if one proxy server receives resource
services from multiple application servers, it is necessary for
the rate controller 235 of the proxy server to calculate the
dispatch rate for each queue with respect to each application
server. The proxy server then may dispatch those requests that
need a specific application server to that application server at
the rate calculated for that application server.

The dispatcher 237 sends the requests from a correspond-
ing request queue to the application server 210 at the dispatch
rate from the rate controller 235.

The dispatcher 237 may also use some methods in the prior
art to implement rate control. For example, a token barrel
algorithm can be used to accomplish the request rate control.
For example, tokens can be checked in a round robin manner
to achieve a proper request dispatch rate control.

Also shown in FIG. 2, each backend application server 210
includes a resource monitor 211, a maximum rate calculator
213 and a rate dispatcher 215.

The application server 210 implements rate management
periodically. The period can be set by an administrator experi-
mentally, be set as needed or be set in other manners. Each
application server 210 has a target resource usage as the upper
limits of resources used during its operation. For example, for
an application server, its CPU usage can be set to 60% and its
memory usage can be setto 95%. That is, the CPU cycles used
by that server during its operation will not exceed 60% of the
total cycles, and the memory space used may not exceed 95%
of the total memory space.

The resource monitor 211 periodically detects the current
usage of resources on the application server and the current
request arrival rate. The resources may include CPU usage,

10

15

20

25

30

35

40

45

55

60

65

8

memory usage, 1/0, and bandwidth or the like. The period
refers to the management cycle of the application server dur-
ing which the detection described above is implemented.
Some or all of the detected information and the target
resource usage can be used to adjust the maximum allowable
arrival rate for a whole management cycle.

The maximum rate calculator 213 calculates the maximum
allowable rate at which the application server 210 may
receive requests during the next management cycle based on
the information detected by the resource monitor 211 and
predetermined target resource usages.

Next, by way of example, an embodiment of maximum
arrival rate calculation is presented, supposed that: the
resource is a CPU cycle, the target resource usage is the upper
limit of CPU usage, and a proportional-integral (PI) control-
ler is used by the application server. For this application
server, the maximum allowable request arrival rate is:

RGIRG-14 KK e()-K, e(j-1) ®)

Wherein, j is the jth management cycle; R(j) is the maxi-
mum allowable request arrival rate calculated for the jth man-
agement cycle; e(j) is the difference of target usage and the
actual resource usage measured in the jth management cycle;
and K, K; are common parameters used in PI controller
technologies, which are set to experimental values in practice.

In this workload management system, a typical scenario is
that a positive e(j) can always be observed if the actual work-
load of the application server is far less than the largest capac-
ity ofthe application server. This causes a continuous increase
in the maximum admitted arrival rate of the application
server. If there is a sharp increase in the actual workload that
can meet the recently updated maximum admitted arrival rate,
the application server is prone to suffer from a serious over-
load. In this situation, R(j—1) in the equation (5) is substituted
with R'(i-1), and R'(j) represents the actual arrival rate mea-
sured in the jth management cycle. That is, the actual request
arrival rate measured in the j—1th management cycle is used
as a basis to calculate the maximum request arrival rate in the
jth management cycle.

In such a workload management system, it is also possible
to observe a slight difference between the sampled actual
admitted rate and the calculated maximum arrival rate. This is
because of errors in statement. The allowable rate will slowly
decrease if the calculated allowable rate is slightly larger than
the sampled admitted rate. This also tends to cause system
overload. In this case, the equation (5) above can be modified
as:

R(G)=Min(R(j-1),R'(-1))+(K+K))*e(j)-K, *e(j-1) Q)

Wherein, Min is a function to take the minimal one of
R(G-1) and R'(-1).

As another embodiment of the present invention, the maxi-
mum request arrival rate can be calculated by the application
server as below. The rate calculator 213 calculates a threshold
allowable arrival rate of the application server based on the
target resource usage of the application server. The rate cal-
culator 213 then proportionally calculates the maximum
admitted request arrival rate based on the current resource
usage from the resource detector 211. For example,

R(j)=resource usage of previous cycle/target resource
K
usage™ R reanotd

The description above merely illustrates some examples of
calculating the maximum admitted request arrival rate by the
application server. Certainly, those skilled in the art can cal-
culate the maximum admitted request arrival rate of the appli-
cation server in other manners while meeting the target
resource usage requirement.

US 9,071,540 B2

9

The rate dispatcher 215 may allocate the maximum admit-
ted rate to respective proxy servers as predetermined rates
thereof based on a predetermined policy. Since the applica-
tion server 210 may serve multiple proxies, the sum of the
request arrival rate allocated to respective proxies by the rate
dispatcher 215 should be equal to its calculated maximum
allowable arrival rate.

The rate dispatcher 215 may adopt several policies to allo-
cate its admitted arrival rate to each proxy. For example, the
policy can be that of averaged allocation, i.e., evenly allocate
the maximum admitted arrival rate to the proxies. For
example, if the maximum admitted arrival rate calculated by
the rate calculator 213 is 100 requests/s and the application
server 210 needs five proxy servers to provide resource ser-
vice, then the request rate prescribed by the rate dispatcher
215 for each proxy is 20 request/s. A new rate is allocated to
different proxy server 230 based on the policy.

Alternatively, the rate dispatcher 215 can receive descrip-
tive information from proxies, such as request arrival rate,
queuing description or other necessary information. Based on
the received information, the rate dispatcher 215 can allocate
a different request arrival rate to each proxy.

FIG. 4 illustrates a schematic flowchart of the workload
management process implemented on the proxy server
according to the embodiment of this disclosure.

At step 411, it is determined whether a new computing
cycle starts. If not, the process continues to wait. Otherwise,
the process proceeds into step 413.

At step 413, based on the request-related information mea-
sured and service quality parameters relative to the service
levels of requests, the dispatch rate for the requests of each
service level is determined, wherein the sum of the dispatch
rate of respective service levels are less than or equal to a
predetermined rate.

At step 415, requests are dispatched for a corresponding
service level according to the determined dispatch rate.

The detailed operations of steps 413 and 415 are described
in detail with reference to the proxy server 230 as shown in
FIG. 2, and hence will not be repeated herein.

Next, the process returns to step 411, waiting for the start of
the next management cycle.

FIG. 5 illustrates a schematic flowchart of the workload
management process implemented on the application server
according to an embodiment of the invention.

At step 511, it is determined whether a new control cycle
starts. If not, the process continues to wait. Otherwise, the
process proceeds to step 513.

At step 513, the current usage of resources of the applica-
tion server and the current request arrival rate are detected.

At step 515, based on the detected current resource usage
and the current request arrival rate and a target resource usage,
a maximum admitted request rate for the next management
cycle is calculated.

At step 517, based on a predetermined policy, the maxi-
mum admitted rate is allocated to each proxy as its predeter-
mined rate.

The detail operations in steps 513, 515 and 517 has been
described above with reference to the application server 210
as shown in FIG. 2, and will not be repeated herein.

Next, the process returns to step 511, waiting for the start of
the next management cycle.

One embodiment according to an aspect of the invention
may provide one or more of the following advantages:

1. Low overhead: this distributed solution may avoid too
much overhead since there is very limited information com-

30

35

40

45

55

10

municated between proxy server and application server. Too
much overhead may increase system complexity in mainte-
nance and management.

2. Priority and Fairness: These are typical requirements for
workload management. Flows with higher priority may get
better QoS assurance; but no flow should be starved.

3. Less instrumentation needs to be installed on back-end
servers.

4. Quick convergence: The system should converge quickly
along with different characteristic of load. Controlling solu-
tions requiring long training period may not work well. Quick
convergence can be achieved with addition or deletion of
different system components in the present embodiment.

5. Resilient and adaptive: It should be able to deal with a
combination of different workload types. Additionally, it
should involve less human intervention or configurations.

As will be appreciated by one skilled in the art, the present
invention can be embodied as a system, method or computer
program product. Accordingly, the present invention may
take the form of an entirely hardware embodiment, an entirely
software (including firmware, resident software, micro-code,
etc.) embodiment or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, the
present disclosure may take the form of a computer program
product embodied in any tangible medium of expression hav-
ing computer usable program code embodied therein.

Any combination of one or more computer usable or com-
puter readable medium(s) can be utilized. The computer-
usable or computer-readable medium can be, for example but
is not limited to, an electronic, magnetic, optical, electromag-
netic, infrared, or semiconductor system, apparatus, device,
or propagation medium. In the context of this document, a
computer-usable or computer-readable medium can be any
medium that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device. The com-
puter-usable medium may include a data signal by which the
computer-usable program code embodied propagates either
in baseband/or as part of a carrier wave. The computer usable
program code can be transmitted using any appropriate
medium, including but not limited to wireless, wireline, opti-
cal fiber cable, RF, etc.

The flow charts and block diagrams in the diagrams illus-
trate a hierarchical architecture, function and operation likely
implemented by the system, method and computer program
product according to various embodiments of the present
disclosure. Atthis point, each block in the flow charts or block
diagrams may represent a module, a program segment, or a
part of code, the module, the program segment, or the part of
code including one or more executable instructions for imple-
menting a prescribed logical function. It should be noted that,
in some alternative implementations, the functions noted in
the blocks may also occur in a sequence different from what
is noted in the diagrams. It should also be noted that each
block in the block diagrams and/or flow charts and a combi-
nation of blocks in block diagrams and/or flow charts can be
implemented by a dedicated hardware-based system for
executing a prescribed function or operation or can be imple-
mented by a combination of dedicated hardware and com-
puter instructions.

The embodiment is selected and described to best explain
the principles of the disclosure and its practical application to
thereby enable others skilled in the art to understand that
various embodiments is possible with various modifications
as suited to the particular purpose contemplated. The descrip-
tion of'this disclosure is given for illustration and description,

US 9,071,540 B2

11

and is not exhaustive or intended to limit the disclosure to the
form stated. Thus, various changes and modifications can be
effected by one skilled in the art without departing from the
spirit or scope of the invention.

What is claimed is:

1. A hierarchical network system, comprising:

at least one proxy server, comprising: a rate controller
configured to, based on measured request-related infor-
mation and service quality parameters relative to service
levels of requests, periodically determine a dispatch rate
for requests of each service level, wherein a sum of said
dispatch rate for respective service levels is less than or
equal to a predetermined rate; and a request dispatcher
configured to dispatch said requests of the correspond-
ing service level in accordance with said dispatch rate
determined by said rate controller; and

an application server configured to serve said at least one
proxy server, comprising:

a resource detector configured to periodically detect a cur-
rent usage of resources of said application server and a
current request arrival rate;

a maximum rate calculator configured to, based on said
detected current resource usage, said current request

10

15

20

12

arrival rate and a target usage of the resource, calculate a
maximum admitted rate of requests for a next manage-
ment cycle; and

a rate distributor configured to distribute the maximum
admitted rate for each proxy server as its predetermined
rate based on a predetermined policy.

2. The hierarchical network system according to claim 1,
wherein said predetermined policy is to evenly allocate said
maximum admitted rate to said proxy server.

3. The hierarchical network system according to claim 1,
wherein said resource comprises at least one of CPU usage,
memory usage, [/O, and bandwidth.

4. The hierarchical network system according to claim 3,
wherein when said resource is CPU usage, said maximum
rate calculator adopts proportional-integral controller tech-
nologies to calculate said maximum allowable rate.

5. The hierarchical network system according to claim 1,
wherein the calculation period of said proxy server is in
synchronization with said management cycle of the applica-
tion server.

